PHÂN TÍCH HIẸUU QUẢ KỸ THUẠT CỦA NGHỀ NUÔI TÔM THẺ CHÂN TRÁNG THÂM CANH TẠI TỈNH QUẢNG NGÃI

Lê Kim Long
Truờng Đại học Nha Trang
Email: lekimlong@ntu.edu.vn

Ngày nhận: 15/2/2017
Ngày nhận bản sửa: 20/3/2017
Ngày duyệt đăng: 25/3/2017

Tóm tắt:

Bài báo này trình bày tóm lược nền tảng lý thuyết kinh tế về hiệu quả kỹ thuật theo định huớng đầu vào và áp dụng phuơng pháp phi tham số để uớc luợng chỉ số này cho các hộ nuôi tôm thẻ chân trắng thâm canh tại tỉnh Quảng Ngãi trong năm sản xuất 2014. Kết quả nghiên cứu cho thấy, bình quân, các yếu tố đầu vào biến đổi của sản xuất có thể giảm xuống 11% trong khi vẫn duy trì được đầu ra không đổi. Hơn nũa, kinh nghiệm sản xuất của nông hộ đóng vai trò quan trọng đối với hiệu quả của nghề nuôi tôm thâm canh ở Quảng Ngãi. Chiến luợc triển khai mở rộng VietGAP và chất luợng các khóa tập huấn kỹ thuật cho nghề nuôi tôm thẻ chân trắng thâm canh cần đurợc rà soát lại cẩn trọng. Đế hướng đến một nghề nuôi tôm thẻ công nghiệp và bền vũng cho Quảng Ngãi, các chính sách về tiếp cận tín dụng và doanh nghiệp hóa nghề nuôi cũng cần được chú trọng.
Từ khóa: DEA, nuôi tôm thẻ thâm canh, nuôi trồng thủy sản bền vững.
Technical efficiency analysis of intensive white-leg shrimp aquaculture in Quang Ngai province

Abstract

This paper gives a brief presentation of the theoretical economic background on technical efficiency with input orientation and adopts non-parametric method to estimate this index for the intensive white-leg shrimp farming in the year of 2014 in Quang Ngai province. The results indicate that, on average, variable inputs of production can be reduced by 11% while output is given. Moreover, farmer's experiences are important for technical efficiency of white-leg shrimp aquaculture. Strategy for VietGAP extension and quality of technical training courses should be carefully re-assessed. For a sustainable shrimp aquaculture in Quang Ngai, policies should focus on formal credit access and attraction of investment from enterprises.
Keywords: DEA, intensive white-leg shrimp farming, sustainable aquaculture.

1. Giới thiệu

Tôm là thực phẩm có hàm lượng dinh dưỡng cao và là mặt hàng chủ lực đóng góp chính vào kim ngạch xuất khẩu hàng năm của Việt Nam. Kim ngạch xuất khẩu tôm hiện nay của Việt Nam đạt khoảng 3 tỷ USD, chiếm 40% kim ngạch xuất khẩu thủy sản (VASEP, 2016). Quảng Ngãi là một trong những tỉnh đầu tiên trong cả nước phát triển nuôi tôm thẻ chân trắng. Từ năm 2005 đến năm 2011, diện tích nuôi
tôm chân trắng gia tăng nhanh chóng từ 190 ha lên 450 ha và chiếm $97,5 \%$ diện tích nuôi trồng của toàn tỉnh trong năm 2011. Đến năm 2014, tổng diện tích nuôi tôm thẻ chân trắng của Quảng Ngãi đạt 1.029 ha. Trong đó, tổng diện tích nuôi tôm thẻ chân trắng thâm canh của Quảng Ngãi đạt 426 ha (tính theo vụ nuôi) hay 193 ha tính theo diện tích mặt nước nuôi (bình quân 2,2 vụ/năm) trong năm 2014 (Sở Nông nghiệp và Phát triển Nông thôn Quảng Ngãi, 2015).

Trong những năm đầu phát triển, khi môi trường chưa bị ô nhiễm, nghề nuôi tôm thẻ chân trắng thâm canh đã mang lại lợi nhuận lớn, giúp giải quyết công ăn việc làm và chuyển dịch cơ cấu kinh tế của Quảng Ngãi. Tuy nhiên, sự phát triển diện tích nuôi quá nhanh ở phạm vi nông hộ, thiếu quy hoạch và không tuân thủ các quy định đã làm bùng phát dịch bệnh và gây thiệt hại không nhỏ cho nghề nuôi này (Sở Nông nghiệp và Phát triển Nông thôn Quảng Ngãi, 2015). Martinez \& Leung (2004) và Lê Kim Long \& cộng sự (2016) đã chỉ ra rằng nguồn gốc gây ô nhiễm trong nuôi tôm là là ni-tơ và phốt-pho phát thải do dùng thức ăn nuôi tôm quá mức. Khi nguồn nước nuôi bị ô nhiễm thì không những hệ động thực vật tại khu vực nuôi bị ảnh hưởng mà còn ảnh hưởng trực tiếp đến năng suất và hiệu quả nuôi tôm tại vùng nuôi cả trong ngắn và dài hạn. Mặc dù Nhà nước đã giành nhiều công sức để triển khai VietGAP và tập huấn kỹ thuật nuôi tôm thẻ thâm canh theo hướng VietGAP từ những năm 2011 nhưng câu hỏi về hiệu quả của hoạt động này cũng như tính bền vững của nghề nuôi tôm thẻ chân trắng thâm canh tại Quảng Ngãi hiện vẫn rất quan trọng với các nhà quản lý và người nuôi tôm ở đây.

Trong điều kiện dân số thế giới gia tăng và các nguồn tài nguyên thiên nhiên hữu hạn, nâng cao hiệu quả sử dụng các nguồn lực đầu vào của sản xuất đóng vai trò cốt yếu để hướng đến phát triển bền vững. Do vậy, làm thế nào để gia tăng sản lượng đầu ra mà không phải sử dụng nhiều hơn yếu tố đầu vào hoặc là tiết kiệm các yếu tố đầu vào mà không làm sụt giảm sản lượng đầu ra đã và đang là một chủ đề được nhiều nhà khoa học, nhà hoạch định chính sách trên thế giới quan tâm. Farrell (1957) là một trong những người đầu tiên đề cập một cách có hệ thống về lý thuyết hiệu quả sử dụng các nguồn lực đầu vào của sản xuất, với tên gọi là hiệu quả kỹ thuật.

Việc phân tích hiệu quả kỹ thuật của các đơn vị sản xuất nhằm đề xuất các chính sách phát triển bền vững đã và đang được áp dụng rất rộng rãi trong các nghiên cứu thực nghiệm (ví dụ, xem Emrouznejad \& Yang, 2017). Nhìn chung, có hai phương pháp chính để ước lượng hiệu quả kỹ thuật là data envelopment analysis (DEA), còn gọi là cách tiếp cận phi tham số; và stochastic frontier analysis (SFA), hay là cách tiếp cận tham số (Bogetoft \& Otto, 2010). Uu điểm chính của DEA so với SFA là không phải tìm kiếm và giả thiết dạng hàm cho công nghệ sản xuất, và vì thế, thường đơn giản trong tính toán và không phải thực hiện các kiểm định với yêu cầu rất chặt chẽ (thường không phải
lúc nào cũng thỏa mãn) về giả thiết nhiễu của mô hình. Nhược điểm chính của phương pháp DEA là không tách được nhiễu ngẫu nhiên ra khỏi kết quả tính toán (Bogetoft \& Otto, 2010).

Cả hai cách tiếp cận phân tích DEA và SFA đều được áp dụng rất rộng rãi trong nghiên cứu của ngành nuôi trồng thủy sản (Iliyasu \& cộng sự, 2014). Gần đây, nhiều nghiên cứu cả ở trong và ngoài nước đã áp dụng cách tiếp cận DEA để phân tích hiệu quả kỹ thuật trong lĩnh vực nuôi trồng thủy sản. Các nghiên cứu tiêu biểu ở nước ngoài phải kể đến như Alarm \& Murshed-e-Jahan (2008); Alarm (2011); Nguyen \& Fisher (2014); Iliyasu \& cộng sự (2016);... Các nghiên cứu trong nước, ví dụ như, Nguyễn Văn Quang \& Nguyễn Tiến Hùng (2014); Lê Kim Long \& Đặng Hoàng Xuân Huy (2015). Các nghiên cứu này có hai đặc điểm như sau (xem lược khảo ở Iliyasu \& cộng sự, 2014). Thứ nhất, các nghiên cứu về hiệu quả kỹ thuật ở các nước đang phát triển thường lựa chọn cách tiếp cận tối thiểu hóa đầu vào với đầu ra không đổi vì: (i) nguồn lực đầu vào tài chính của nông hộ có hạn; (ii) kiểm soát đầu vào dễ hơn nhiều so với đầu ra; và (iii) việc lãng phí đầu vào trong nghề nuôi, đặc biệt là thức ăn, kháng sinh và hóa chất sẽ gây ô nhiễm môi trường trầm trọng. Thứ hai, công nghệ nuôi ở phạm vi nông hộ thường được giả thiết là năng suất thay đổi theo quy mô (variable returns to scale, VRS) do: (i) thị trường đầu vào và đầu ra của nông hộ nuôi trồng thủy sản thường không hoàn hảo; (ii) sự hữu hạn về tài chính và các hạn chế khác thường ràng buộc nông hộ, làm cho họ khó chọn được quy mô sản xuất tối ưu.

Kế tiếp xu hướng này, bài viết sẽ sử dụng cách tiếp cận DEA với công nghệ sản xuất VRS để phân tích hiệu quả kỹ thuật của nghề nuôi tôm thẻ chân trắng tại Quảng Ngãi. Mục tiêu chính của bài viết là: (i) trình bày tóm lược nền tảng lý thuyết kinh tế của hiệu quả kỹ thuật theo định hướng đầu vào và (ii) ước lượng và xem xét sự ảnh hưởng của các đặc điểm nông hộ đến hiệu quả kỹ thuật của nghề nuôi tôm thẻ chân trắng thâm canh tại Quảng Ngãi, với bộ dữ liệu thu thập cho năm sản xuất 2014, nhằm đề xuất một số khuyến nghị cho chính quyền và các hộ nuôi để từng bước phát triển nghề nuôi bền vững.
2. Co' sở lý thuyết và phương pháp nghiên cứu

2.1. Cơ sở lý thuyết về hiệu quả ky thuật theo đ̣̣nh huớng đầu vào trong sản xuất

Lý thuyết kinh tế định nghĩa tập công nghệ sản xuất (technology set) là tập hợp các khả năng sản
xuất khả thi với một công nghệ cho trước nhằm biến đổi các yếu tố đầu vào thành hàng hóa và dịch vụ (Varian \& Repcheck, 2010). Như vậy, giả sử các đơn vị sản xuất (ký hiệu là các DMU - decision making unit) sử dụng các đầu vào $X=\left(x_{p}, x_{2}, \ldots, x_{n}\right) \in R^{+}{ }_{n}$ để sản xuất ra các đầu ra $Y=\left(y_{p}, y_{2}, \ldots, y_{m}\right) \in R^{+}{ }_{m}$, khi đó tập công nghệ sản xuất (còn gọi là tập các khả năng sản xuất khả thi) được định nghĩa:
$T=\left\{(X, Y) \in R^{+}{ }_{n} \times R^{+}{ }_{m} \mid X\right.$ có thể sản xuất ra $\left.Y\right\}$ (1)
Để đơn giản, chúng ta sẽ bắt đầu mô tả tập công nghệ sản xuất (T) với trường hợp một đầu ra (y) và một đầu vào (x) như Hình 1 .

Tập công nghệ sản xuất, với trường hợp một đầu vào và một đầu ra, là vùng được giới hạn bởi đường giới hạn khả năng của sản xuất (production fronteir) của một công nghệ cho trước và trục hoành (Varian \& Repcheck, 2010). Tập công nghệ sản xuất có hai đặc điểm quan trọng. Thứ nhất, tập công nghệ là là tập lồi (convex). Đặc điểm quan trọng thứ hai của tập công nghệ sản xuất là FD (free disposability hay tính khả thi của công nghệ sản xuất) tức: (i) nếu đầu ra không đổi, gia tăng đầu vào thì việc sản xuất luôn khả thi; và (ii) nếu đầu vào không đổi, sản xuất ít đầu ra hơn là luôn khả thi. Với đặc điểm này, tất cả các trạng thái kết hợp của đầu vào và đầu ra (kế hoạch sản xuất) nằm trong tập công nghệ sản xuất đều là các kế hoạch sản xuất khả thi với một công nghệ cho trước (Bogetoft \& Otto, 2010).

Giả sử đơn vị sản xuất A (DMUA) trong Hình vẽ 1 sử dụng lượng đầu vào là x để sản xuất đầu ra y . Do DMUA nằm trong tập công nghệ sản xuất nên
kế hoạch sản xuất này là hoàn toàn khả thi với công nghệ hiện có. Dù vậy, chúng ta cũng nhận thấy đơn vị sản xuất $\mathrm{A}^{\prime}\left(\mathrm{DMU}_{\mathrm{A}^{\prime}}\right)$ nằm trên biên giới hạn cũng sản xuất được đầu ra y nhưng cần lượng đầu vào ít hơn $(x<x)$ với công nghệ hiện có. Rõ ràng, dịch chuyển từ A đến A^{\prime} là một sự dịch chuyển đạt hiệu quả Pareto (Varian \& Repcheck, 2010). Hơn nữa, vì A' nằm trên biên giới hạn khả năng của sản xuất nên không thể sử dụng ít hơn lượng đầu vào x^{\prime} để sản xuất ra mức đầu ra y với công nghệ sản xuất hiện tại. Như vậy x ' chính là lự̛̣ng đầu vào tối thiểu để có thể sản xuất được đầu ra y với công nghệ hiện có. Nghĩa là, $\mathrm{DMU}_{\mathrm{A}^{\prime}}$ là đơn vị sản xuất đạt hiệu quả còn $\mathrm{DMU}_{\mathrm{A}}$ hoạt động chưa hiệu quả với công nghệ cho trước. Lúc đó, chỉ số hiệu quả kỹ thuật của $\mathrm{DMU}_{\mathrm{A}}$ sẽ là $x \prime x$ và có giá trị nằm trong khoảng từ 0 tới 1 . Như vậy, với đầu ra và công nghệ cho trước, chỉ số này càng cao cho thấy đơn vị sản xuất càng tiết kiệm nguồn lực đầu vào, và do vậy, chất lượng hoạt động sản xuất càng cao. Chỉ số này được gọi là hiệu quả kỹ thuật vì được xây dựng dựa trên nền tảng tính khả thi về công nghệ sản xuất và có thể chỉ cần dùng các đơn vị vật lý về đầu ra và đầu vào của sản xuất mà không cần thông tin về giá thị truờng (Bogetoft \& Otto, 2010).

Thực tế, hoạt động sản xuất thường có nhiều đầu ra và đầu vào. Do vậy, việc xác định một chỉ số tổng hợp đo luờng hiệu quả sử dụng các nguồn lực đầu vào để đánh giá chất lượng hoạt động sản xuất là việc làm không dễ dàng. Thông thường, các chỉ số hoạt động quan trọng (key performance indices, KPI) truyền thống như sản lượng/ha, sản lượng/lao

Hình 1: Tập công nghệ sản xuất với một đầu vào và một đầu ra

Đầu ra

Hình 2: Hiệu quả kỹ thuật theo định hướng đầu vào của Farrell (1957)

Nguồn: Điều chỉnh tù Bogetoft \& Otto (2010)
động, sản lượng/tài sản,... có thể được sử dụng. Dù vậy, đây là các chỉ số riêng phần, chỉ xem xét một khía cạnh của sản xuất nên dễ dẫn đến các kết luận trái chiều nhau, không chính xác và có thể dẫn đến sai lầm (Bogetoft \& Otto, 2010). Một chỉ số tổng hợp đánh giá chất lượng hoạt động sản xuất cũng hay được sử dụng trong trường hợp đa đầu ra và đa đầu vào là doanh thu chia chi phí. Dù vậy, nhược điểm của chỉ số này là phụ thuộc vào mức giá thị trường (thường nằm ngoài khả năng kiểm soát của nhà sản xuất) và quy mô sản xuất (không dễ thay đổi trong ngắn hạn). Farrell (1957) đã phát triển một thước đo hiệu quả hướng tâm (tỷ lệ) dựa trên lý thuyết kinh tế về sản xuất cho trường hợp một đầu ra và hai đầu vào như Hình 2.

Với đầu ra và công nghệ sản xuất không đổi, tập công nghệ được định nghĩa ở trên có thể được viết lại thành tập đầu vào đó là $L(y)=\{x:(x, y) \in T\}$. Với đầu ra $y=y_{0}$ không đổi và công nghệ sản xuất cho trước thì tập đầu vào (hay còn gọi là vùng sản xuất khả thi) chính là phần bên phải của đường biên giới hạn khả năng sản xuất (còn được gọi là đường đẳng lượng). Rõ ràng, vùng này có hai đặc điểm là (i) tập lồi (convex); và (ii) với đầu ra không đổi $\left(y=y_{0}\right)$, gia tăng đầu vào thì việc sản xuất luôn khả thi với công nghệ cho trước. Hình vẽ 2 cho thấy đơn vị sản xuất B không thuộc vùng khả thi của sản xuất, nghĩa là với mức đầu vào $x_{1 B}$ và $x_{2 B}$ không thể sản xuất được đầu ra y_{0} với công nghệ hiện tại. C nằm trên đường biên giới hạn khả năng sản xuất nên đạt hiệu quả; A thuộc
vùng khả thi nhưng không nằm trên đường biên giới hạn nên chưa đạt hiệu quả; và OCA thẳng hàng. Farrell (1957) đề nghị một chỉ số tổng hợp đo lường hiệu quả sử dụng các yếu tố đầu vào hướng tâm (các đầu vào có thể tiết kiệm cùng một tỷ lệ) của $\mathrm{DMU}_{\mathrm{A}}$ chính là $\mathrm{OC} / \mathrm{OA}=x_{1 C} x_{1 A}=x_{2 C} \int_{2 A}$. Như vậy, $x_{I C}$ và $x_{2 C}$ là sự kết hợp của các yếu tố đầu vào tối thiểu để $\mathrm{DMU}_{\mathrm{A}}$ có thể sản xuất được đầu ra $y=y_{0}$ với công nghệ sản xuất hiện tại. Chúng ta dễ dàng khái quát hóa chỉ số hiệu quả sử dụng các yếu tố đầu vào hay chỉ số hiệu quả kỹ thuật theo định hướng đầu vào của Farrell (1957) là (Bogetoft \& Otto, 2010):

$$
T E^{I}=\min \{\theta>0 \mid(\theta X, Y) \in T\}
$$

Tóm lại, hiệu quả kỹ thuật Farrell theo định hướng đầu vào là mức tỷ lệ tối thiểu các đầu vào có thể sử dụng (hay tỷ lệ tối đa mà các đầu vào có thể đồng thời cắt giảm) để sản xuất ra các đầu ra không đổi với công nghệ cho trước. Nhìn chung, $0<T E^{I} \leq 1$. Thứ nhất, $T E^{I}=1$ ngụ ý rằng đơn vị sản xuất đang vận hành trên biên giới hạn khả năng sản xuất và được xem là đạt hiệu quả. Tiếp theo, $T E^{I}<1$ nghĩa là đơn vị sản xuất chưa đạt hiệu quả. Gỉa sử giá các đầu vào không đổi thì $1-T E^{I}$ chính là tỷ lệ tiết kiệm chi phí sản xuất lớn nhất có thể đạt được để sản xuất ra đầu ra không đổi với công nghệ hiện có.

2.2. Phương pháp nghiên cúu

Charnes \& cộng sự (1978) đã phát triển cách tiếp cận phi tham số dựa trên nền tảng tối ưu hóa của quy hoạch tuyến tính (được gọi là DEA) để tính toán chỉ
số hiệu quả Farrell cho trường hợp đa đầu vào và đa đầu ra với giả thiết công nghệ sản xuất có tính chất năng suất không đổi theo quy mô (CRS - constant returns to scale). Giả thiết này hàm ý các đơn vị sản xuất đều lựa chọn được mức quy mô hoạt động tối uu. Thực sự, giả thiết này rất khó đạt được trong thực tiễn sản xuất kinh doanh, đặc biệt đối với hoạt động sản xuất ở phạm vi nông hộ nuôi trồng thủy sản (xem Iliyasu \& cộng sự, 2014). Để khắc phục nhược điểm này, Banker \& cộng sự (1984) đã hoàn thiện mô hình tính toán với giả thiết về công nghệ có năng suất thay đổi theo quy mô (VRS - variable returns to scale), được gọi là mô hình BCC. Kể từ đó, cách tiếp cận phân tích DEA với mô hình BBC đã được sử dụng rất rộng rãi trong các nghiên cứu thực nghiệm (xem lược khảo ở Emrouznejad \& Yang, 2017). Trong lĩnh vực nuôi trồng thủy sản, các nghiên cứu sử dụng cách tiếp cận phân tích DEA phần lớn đều sử dụng mô hình BCC (xem Iliyasu \& cộng sự, 2014). Cụ thể mô hình BCC theo định hướng đầu vào áp dụng trong nghiên cứu này được trình bày như sau.

Giả sử rằng có k hộ nuôi tôm thẻ chân trắng và sử dụng n yếu tố đầu vào và sản xuất ra m đầu ra. Đối với hộ nuôi thứ $j(j=1,2, \ldots, k)$, dữ liệu đầu vào và đầu ra được biểu diễn bằng các véc tơ cột là X_{j} và Y_{j} . Dữ liệu cho tất cả các hộ nuôi được biểu diễn bởi ma trận yếu tố đầu vào, X, và đầu ra Y. Khi đó, mô hình toán BCC cho hộ nuôi thứ j là:

$$
T E_{j}^{I}(X, Y)=\min _{\theta_{j}, \lambda} \theta_{j}
$$

Với các ràng buộc:

$$
\begin{gathered}
Y_{j} \leq Y \lambda ; \\
\theta_{j} X_{j} \geq X \lambda ; \\
\lambda \geq 0 ; \\
\sum_{j=1}^{n} \lambda_{j}=1 .
\end{gathered}
$$

Giá trị θ_{j} sẽ là mức hiệu quả kỹ thuật theo định hướng đầu vào hay còn gọi là hiệu quả sử dụng nguồn lực đầu vào của hộ nuôi tôm thứ j, và có giá trị nằm trong khoảng từ 0 đến 1 . Tiếp theo, λ trong mô hình (3) là vec-tơ trọng số không âm, xác định sự kết hợp tuyến tính của các hộ tham chiếu để xây dựng biên giới hạn khả năng sản xuất về lý thuyết của công nghệ hiện tại cho hộ nuôi thứ j. Hơn nữa, $\sum_{j=1}^{n} \lambda_{j}=11$ ràng buộc về công nghệ có tính chất năng suất thay đổi theo quy mô. Cụ thể về các ràng buộc liên quan đến đầu vào và đầu ra của quá trình sản xuất như sau.

Ràng buộc thứ nhất trong mô hình (3) là ràng buộc đối với đầu ra của sản xuất. Phía bên phải của ràng buộc $(\mathrm{Y} \lambda)$ là véc tơ đầu ra của hộ nuôi tôm hiệu quả về lý thuyết (hộ tham chiếu), phía bên trái là đầu ra thực tế của hộ thứ j. Ràng buộc này hàm ý rằng hộ nuôi hiệu quả về mặt lý thuyết (tham chiếu) sẽ sinh ra lượng đầu ra lớn hơn hoặc bằng mức sản lượng đầu ra thực tế của hộ thứ j với cùng một lượng đầu vào cho trước.

Ràng buộc thứ hai là ràng buộc đối với đầu vào trong sản xuất của hộ thứ j. Phía bên phải của ràng buộc $(\mathrm{X} \lambda)$ là mức đầu vào tối thiểu của hộ nuôi tôm hiệu quả về lý thuyết (tham chiếu) với mức đầu ra cho truớc của hộ nuôi tôm thứ j. Phía bên trái của ràng buộc, $\theta_{j} X_{j}$, là mức đầu ra thực tế của hộ nuôi j nhân với chỉ số mức hiệu quả của nó.

Chú ý rằng bài toán này được giải k lần, mỗi lần cho một hộ nuôi trong mẫu. Nếu kết quả của bài toán (3) là $\theta_{j}=1$, thì mức đầu vào mà hộ nuôi j đang sử dụng chính bằng mức đầu vào sử dụng của hộ nuôi đạt hiệu quả về lý thuyết khi sản xuất ra cùng mức đầu ra cho trước. Như vậy, hộ nuôi thứ j đạt hiệu quả. Nếu kết quả $\theta_{j}<1$ thì mức đầu vào mà hộ nuôi thứ j đã sử dụng có thể cắt giảm xuống thấp nhất bằng X mà vẫn sản xuất được đầu ra không đổi. Như vậy, hộ nuôi thứ j chưa đạt hiệu quả.
Việc xác định các nhân tố quan trọng ảnh hưởng đến hiệu quả sử dụng nguồn lực đầu vào trong nghề nuôi trồng thủy sản để từng buớc đề xuất chính sách/ giải pháp nhằm hướng đến sự phát triển bền vững là câu hỏi quan trọng đối với các nhà sản xuất cũng như quản lý ngành và hoạch định chính sách. Vì vậy, kết quả ước lượng hiệu quả kỹ thuật ở (3) sẽ được tiếp tục dùng để phân tích ở bước thứ hai. Do, $\mathrm{TE}_{\mathrm{j}}^{\mathrm{I}}$ là thước đo vô hướng và có giá trị thuộc $(0,1]$, mố hình hồi quy Tobit được áp dụng để phân tích sự ảnh hưởng của các nhân tố đặc điểm nông hộ đến hiệu quả kỹ thuật được trình bày như sau (xem Iliyasu \& cộng sự, 2014):

$$
\begin{equation*}
T E_{j}^{I}=\beta Z_{j}+\varepsilon_{j} \tag{4}
\end{equation*}
$$

Trong đó, $T E_{j}^{I}$ là hiệu quả kỹ thuật tính toán từ (3); Z_{i} là véc tơ các đặc điểm nông hộ, là véc tơ các tham số được ước lượng và ε_{j} là sai số ngẫu nhiên.
Nghiên cứu này sử dụng bộ dữ liệu điều tra hoạt động sản xuất của các hộ nuôi tôm năm 2014 trong nghiên cứu của Lê Kim Long \& cộng sự (2016) tại các tỉnh duyên hải Nam Trung Bộ. Tổng số hộ nuôi thâm canh tôm thẻ chân trắng được khảo sát ở

Quảng Ngãi là 62 hộ tại các huyện nuôi trọng điểm với hạn ngạch mẫu được xác định trước có tổng diện tích là 45 ha, chiếm khoảng 23% tổng diện tích nuôi tôm thẻ chân trắng thâm canh toàn tỉnh trong năm 2014. Số liệu thu thập bằng phương pháp phỏng vấn trực tiếp chủ hộ với bảng câu hỏi đã được chuẩn bị sẵn vào quý 1 năm 2015. Phần mềm R được sử dụng cho phân tích (xem Bogetoft \& Otto, 2010).

3. Kết quả nghiên cứu và thảo luận

3.1. Thống kê mô tả các biến dùng trong phân tích

Kế tiếp các nghiên cứu về hiệu quả nghề nuôi tôm của Martinez \& Leung (2004); Alam \& Murshed-e-Jahan (2008); Nguyen \& Fisher (2014); Lê Kim Long \& Đặng Hoàng Xuân Huy (2015), nghiên cứu này sử dụng $n=5$ biến đầu vào biến đổi chủ yếu (chiếm phần lớn chi phí biến đổi) của nghề nuôi tôm thẻ chân trắng thâm canh tại Quảng Ngãi là: giống, thức ăn, lao động, hóa chất và năng lượng cho mỗi ha trong năm sản xuất 2014; và $m=01$ biến đầu ra là sản lượng tôm thu hoạch trên một ha trong năm cho mô hình ở (3). Trên cơ sở lược khảo của Iliyasu \& cộng sự (2014) cũng như thực tiễn của nghề nuôi tôm thẻ chân trắng ở Quảng $\mathrm{Ngãi}$, các đặc điểm nông hộ được lựa chọn cho mô hình phân tích (4) gồm: (i) diện tích trang trại nuôi tôm; (ii) tiếp cận tín
dụng chính thức là biến giả với biến có giá trị là 1 nếu hộ được vay nợ ngân hàng, và có giá trị là 0 nếu hộ không được vay nợ ngân hàng; (iii) kinh nghiệm là số năm mà chủ hộ tham gia nghề nuôi tôm; (iv) tập huấn là biến giả với giá trị bằng 1 nếu hộ đã từng được tập huấn kỹ thuật chính thức, và giá trị bằng 0 nếu chưa được tập huấn; (v) học vấn cũng là biến giả và có giá trị bằng 1 nếu chủ hộ đã học từ trung cấp trở lên, và giá trị là 0 nếu chưa. Bảng 1 mô tả thống kê tất cả các biến sử dụng trong nghiên cứu này.

Bảng 1 cho thấy một số đặc trưng cơ bản của nghề nuôi tôm thẻ chân trắng thâm canh ở Quảng Ngãi như sau. Thứ nhất, các hộ nuôi tôm thẻ chân trắng ở Quảng Ngãi có diện tích nuôi bình quân đạt 0,74 ha, lớn nhất là 3 ha và nhỏ nhất là 0,2 ha. Kinh nghiệm tham gia nuôi tôm của chủ hộ bình quân đạt 8,19 năm, lớn nhất là 16 và nhỏ nhất là 1,5 năm. Số hộ tiếp cận được tín dụng ngân hàng (chính thức) là 37%. Số hộ đã từng được tập huấn kỹ thuật chính thức là 45%. Năng suất tôm bình quân cho mỗi ha trong năm 2014 đạt $22.857,12 \mathrm{~kg}$, lớn nhất là 45.000 và nhỏ nhất là 8.000 kg .

3.2. Phân tích hiệu quả kỹ thuật theo định hướng đầu vào

Kết quả tính toán hiệu quả kỹ thuật của nghề nuôi

Bảng 1. Thống kê mô tả các biến dùng trong phân tích

Tên biến	Đơn vị tính	Giá trị trung bình	Độ lệch chuẩn	Nhỏ nhất	Lớn nhất
Mô hình hàm sản xuất					
Sản lương đầu ra (y)	Kg/ha	22.857,12	8.580,99	8.000,00	45.000,00
Đầu vào (x)					
Giống (x_{l})	Nghìn con/ha	3.144,70	1.454,97	1.200,00	8.250,00
Thức ăn (x_{2})	Kg/ha	32.000,50	12.555,08	10.000,00	70.000,00
Lao động (x_{3})	Số giờ/ha	6.153,30	3.160,24	1.200,00	14.400,00
Hóa chất (x_{4})	Kg/ha	80,10	56,33	9,50	342.90
Năng lượng (x_{5})	Kw/ha	152.909,10	82.190,61	21.702,60	427.269,30
Đặc điểm nông hộ					
Diện tích trang trại (z_{l})	На	0,74	0,54	0,2	3
Tiếp cận tín dụng chính thức $\left(z_{2}\right)$	Dummy	0,37	-	0	1
Kinh nghiệm (z_{3})	Năm	8,19	3,81	1,5	16
Tập huấn kỹ thuật (z_{4})	Dummy	0,45	-	0	1
Học vấn (z_{5})	Dummy	0,29	-	0	1

Nguồn: Tính toán tù bộ dĩ liệu điều tra của Lê Kim Long \& cộng sụ (2016).

Bảng 2. Kết quả ước lượng hiệu quả kỹ thuật của nghề nuôi tôm thẻ chân trắng tại Quảng Ngãi năm 2014

Mức hiệu quả kỹ thuật	Tần số (\%)
$<0,50$	0,0
$0,50-0,59$	1,6
$0,60-0,69$	3,2
$0,70-0,79$	19,4
$0,80-0,89$	22,6
$0,90-0,99$	22,6
1,00	30,6
Trung bình	0,89
Lớn nhất	1,00
Nhỏ nhất	0,58

Nguồn: Tính toán tù số liệu điều tra của Lê Kim Long \& cộng sụ (2016)
tôm thẻ chân trắng ở Quảng Ngãi năm 2014 theo mô hình (3) từ phần mềm R.

Bảng 2 cho thấy hiệu quả kỹ thuật của các hộ nuôi tôm thẻ chân trắng thâm canh tỉnh Quảng Ngãi biến động từ 0,58 đến 1,0 với giá trị trung bình là 0,89 . Trong đó, $30,6 \%$ số hộ nuôi đạt hiệu quả $T E^{I}=1$ và có tới trên 75% số hộ trong mẫu có hiệu quả kỹ thuật lớn hơn 0,80 . Như vậy, bình quân, các đầu vào biến đổi hiện tại của nghề nuôi tôm thẻ chân trắng thâm canh ở Quảng Ngãi có thể giảm xuống 11% trong khi vẫn duy trì được đầu ra không đổi. Kết quả nghiên cứu này cũng tương đối tương đồng với các nghiên cứu khác ở trong và ngoài nước sử dụng cách tiếp cận DEA để phân tích hiệu quả sử dụng đầu vào của nghề nuôi trồng thủy sản, ví dụ như Alam \& Murshed-e-Jahan (2008) cho nghề nuôi tôm ở Bangladesh $\left(T E^{I}=0,85\right)$; Alarm năm 2011 đối với nghề nuôi cá ba-sa thâm canh ở Bangladesh $\left(T E^{I}=\right.$ 0,86), Nguyễn Văn Quang \& Nguyễn Tiến Hùng (2014) cho nghề nuôi cá lồng bè tại Quảng Ninh $\left(T E^{I}=0,94\right)$, Iliyasu \& Mohamed (2015) cho nghề nuôi cá trong bể ở Malaysia $\left(T E^{I}=0,86\right)$, Iliyasu \& cộng sự (2016) cho các nghề nuôi thủy sản nước ngọt Malaysia ($T E^{I}$ giao động từ 0,83 đến 0,89). Kết quả này cho thấy trình độ tổ chức sản xuất của hộ gia đình nuôi tôm thẻ chân trắng thâm canh ở Quảng Ngãi là tương đối tốt, tương tự như các kết quả của nhiều nghề nuôi trồng thủy sản thâm canh ở các nghiên cứu trước.

Trong năm sản xuất 2014, với bình quân số vụ nuôi trong năm của mẫu là 2,18 , từ dữ liệu Bảng 1 , hai chỉ tiêu kỹ thuật quan trọng đối với các hộ nuôi tôm thẻ
chân trắng ở Quảng Ng ãi là: (i) mật độ thả giống bình quân là $\left.\left(\left(3.144,70^{*} 1000\right) / 2,18\right)\right) / 10.000=144 \mathrm{con} /$ m^{2}; (ii) hệ số chuyển đổi thức ăn (feed conversion ratio, FCR) bình quân là $(32.000,50 / 22.857,12)=$ 1,40 lần, tức mức sử dụng thức ăn là $1,40 \mathrm{~kg}$ để tạo ra được 1 kg thành phẩm tôm. Với kết quả tính toán mức hiệu quả kỹ thuật trung bình là 89% cho thấy rằng, bình quân, hộ nuôi tôm thẻ thâm canh ở Quảng $\mathrm{Ngãi}$ chỉ nên thả mật độ nuôi mỗi vụ là $144 * 0,89=128 \mathrm{con} / \mathrm{m}^{2}$ và FCR chỉ nên sử dụng ở mức $1,40 * 0,89=1,25$ lần. Sự tiết kiệm các đầu vào này không chỉ giúp các hộ nuôi giảm chi phí trong quá trình sản xuất (thức ăn chiếm khoảng 50% chi phí biến đổi) mà còn giúp giảm thiểu ô nhiễm môi trường khi lượng phát thải ô nhiễm của nghề nuôi tôm thẻ chân trắng chủ yếu do thức ăn tạo ra. Kết tiếp, kết quả của mô hình hồi quy Tobit (4) được trình bày ở Bảng 3 .

Kết quả ở Bảng 3 cho thấy hai biến kinh nghiệm nuôi và tập huấn kỹ thuật ảnh hưởng có ý nghĩa thống kê đến hiệu quả kỹ thuật của nông hộ nuôi tôm thẻ chân trắng ở Quảng $\mathrm{Ngãi}$ với mức ý nghĩa lần lượt là 10 và 5%. Cụ thể, nếu số năm tham gia nuôi tôm của chủ hộ càng lớn thì mức hiệu quả kỹ thuật càng cao. Đây là kết quả thường thấy ở các nghề nuôi trên thế giới với lý giải theo giả thiết "học từ thực tiễn, learning-by-doing" nên kinh nghiệm có ảnh hưởng dương tới hiệu quả (xem Iliyasu \& cộng sự, 2014). Hơn nữa, nuôi tôm thâm canh hiện là một nghề nuôi khó vì biến đổi khí hậu, dịch bệnh tràn lan và ô nhiễm môi trường nghiêm trọng (xem Lê Kim Long \& cộng sự, 2016). Kết quả này cũng tương

Bảng 3. Kết quả mô hình hồi quy Tobit

Tên biến	Hệ số	Sai số chuẩn	Giá trị t	Giá trị p
Hệ số chặn	0,8447	0,0560	15,089	$0,000^{* *}$
Diện tích trang trại	0,0221	0,0341	0,648	0,517
Kinh nghiệm	0,0102	0,0057	1,767	$0,077^{*}$
Tiếp cận tín dụng chính thức	0,0228	0,0414	0,551	0,581
Tập huấn kỹ thuật	$-0,0829$	0,0412	$-2,011$	$0,044^{* *}$
Học vấn	$-0,0005$	0,0417	$-0,011$	0,991

* Múc ý nghĩa 10\%; ** Múc ý nghĩa 5\%

Nguồn: Tính toán từ số liệu điều tra của Lê Kim Long \& cộng sụ (2016)
thích với kết quả của Nguyễn Văn Quang \& Nguyễn Tiến Hùng (2014) cho nghề nuôi thâm canh cá lồng bè tại Quảng Ninh.

Bên cạnh đó, các hộ có tham gia tập huấn kỹ thuật chính thức trong các năm gần đây có mức hiệu quả sử dụng đầu vào thấp hơn các hộ không tham gia tập huấn. Kết quả này cũng tương thích với kết quả của Nguyen \& Fisher (2014) cho nghề nuôi tôm ở Đồng bằng Sông Cửu Long dù tác động ngược chiều chưa đủ ý nghĩa thống kê. Nguyen \& Fisher (2014) cũng đã kêu gọi các cơ quan chính phủ cần xem xét thận trọng lại mục tiêu và chất lượng của các chương trình tập huấn kỹ thuật. Thực tế, các chương trình tập huấn kỹ thuật chính thức và triển khai áp dụng VietGAP trong nuôi tôm thẻ chân trắng cho các nông hộ trong những năm vừa qua đã bộc lộ nhiều hạn chế không phù hợp thực tiễn. Khảo sát của Lê Kim Long \& cộng sự (2016) cho thấy do chưa tạo ra được các vùng nuôi tôm VietGAP với hệ thống xả và xử lý thải công nên các hộ tham gia nuôi VietGAP trong vùng nuôi thường không đạt được hiệu quả như mong muốn.

Nguyên nhân chính là do: (i) các hộ không tham gia VietGAP thường nuôi với mật độ lớn và mạnh tay trong việc sử dụng kháng sinh cũng như thuốc trị bệnh; (ii) tất cả các hộ nuôi đều xả thải ra biển rồi lại lấy nước từ biển vào nuôi tôm nên ô nhiễm, dịch bệnh tràn lan; (iii) không có sự phân biệt về giá tôm trên thị trường. Có lẽ, chúng ta cần quy hoạch vùng nuôi tôm thẻ VietGAP, xây dựng hệ thống xả và xử lý thải công của cả vùng nuôi song song với nâng cao chất lượng các chương trình tập huấn kỹ thuật theo hướng VietGAP.

Tiếp theo, mức độ ảnh hưởng của các biến còn lại đến hiệu quả kỹ thuật đều không có ý nghĩa thống kê dù ở mức ý nghĩa 10%. Dù vậy, hai vấn đề cần tiếp tục được quan tâm nghiên cứu sâu hơn. Thứ nhất,
biến diện tích mặc dù có tác động dương nhưng không ảnh hưởng đủ mạnh đến hiệu quả của nông hộ. Nguyen \& Fisher (2014) cũng tìm thấy kết quả tương tự đối với nghề nuôi tôm ở Đồng bằng Sông Cửu Long. Kết quả này hàm ý rằng việc gia tăng quy mô để nuôi tôm thẻ chân trắng thâm canh dưới dạng công nghiệp có lẽ không phù hợp với sản xuất ở quy mô nông hộ tại Quảng Ngãi. Kết quả này ủng hộ kêu gọi của Lê Kim Long \& cộng sự (2016) là nên doanh nghiệp hóa nghề nuôi tôm thẻ thâm canh ở vùng Duyên hải Nam Trung Bộ. Thêm vào đó, theo Lê Kim Long \& cộng sự (2016) thì nghề nuôi tôm thâm canh đòi hỏi nhu cầu về vốn lớn và gần như các hộ đều có nhu cầu vay vốn cho hoạt động sản xuất. Kết quả của nghiên cứu này cho thấy chỉ có 37% hộ gia đình tiếp cận được nguồn vốn chính thức và hiện tại yếu tố này dù có tác động tích cực đến hiệu quả kỹ thuật nhưng chưa đủ ý nghĩa thống kê (ở mức 10%). Có lẽ, chính sách tín dụng đối với nghề nuôi tôm thẻ chân trắng thâm canh cũng sẽ là vấn đề cần được quan tâm xem xét lại.

4. Kết luận và hàm ý chính sách

Nghiên cứu đã tóm lược nền tảng lý thuyết kinh tế về chỉ số hiệu quả kỹ thuật theo định hướng đầu vào được Farrell (1957) đề xuất và áp dụng phương pháp phi tham số, DEA, để ước lượng chỉ số này cho các hộ nuôi tôm thẻ chân trắng thâm canh tại tỉnh Quảng Ngãi trong năm sản xuất 2014. Kết quả cho thấy trình độ tổ chức sản xuất của các hộ gia đình nuôi tôm thẻ chân trắng thâm canh ở Quảng Ngãi là tương đối tốt. Dù vậy, mức cải thiện hiệu quả kỹ thuật tiềm năng vẫn còn khoảng 11%. Nghĩa là nếu đầu ra không đổi, các đầu vào biến đổi của sản xuất có thể giảm xuống 11%. Như vậy, bình quân, các hộ nuôi tôm thẻ chân trắng thâm canh ở Quảng Ngãi nên thả giống với mật độ $128 \mathrm{con} / \mathrm{m}^{2}$ và nuôi với FCR bình quân là 1,25 lần.

Kết quả nghiên cứu cũng cho thấy kinh nghiệm đóng vai trò quan trọng đối với nghề nuôi tôm thẻ thâm canh tại Quảng Ngãi. Hơn nữa, chiến lược triển khai mở rộng VietGAP và chất lượng các khóa tập huấn kỹ thuật cho nghề nuôi tôm thẻ chân trắng thâm canh cần được rà soát lại cẩn trọng và có điều chỉnh thích hợp. Các chính sách về quy hoạch vùng nuôi VietGAP, xây dựng hệ thống xả và xử lý chất
thải công, quy định sử dụng kháng sinh và mùa vụ nuôi... cần phải được triển khai đồng bộ với việc tập huấn kỹ thuật và triển khai VietGAP ở phạm vi nông hộ. Cuối cùng, để hướng đến một nghề nuôi tôm thẻ công nghiệp và bền vững cho Quảng $\mathrm{Ngãi}$, các chính sách về tiếp cận tín dụng và doanh nghiệp hóa nghề nuôi tôm thâm canh cũng cần được chú trọng.

Lời thừa nhận/cảm ơn: Tác giả bài báo chân thành cảm ơn Lê Kim Long \& cộng sự (2016) đã cho phép tác giả sử dụng bộ dữ liệu điều tra nông hộ nuôi thâm canh tôm thẻ chân trắng tại Quảng Ngãi cho nghiên cứu này. Tác giả cũng xin chân thành cảm ơn sự góp ý của các phản biện, bạn bè và đồng nghiệp trong quá trình hoàn thiện bài báo.

Tài liệu tham khảo

Alarm, F. (2011), 'Measuring technical, allocative and cost efficiency of pangas (Pangasius hypophthalmus: Sauvage 1878) fish farmers of Bangladesh', Aquaculture Research, 42(10), 1487-1500.

Alam, F. \& Murshed-e-Jahan, K. (2008), 'Resource allocation efficiency of the prawn-carp farmers of Bangladesh', Aquaculture Economics \& Management, 12(3), 188-206.
Banker, R.D., Charnes, A. \& Cooper, W.W. (1984), 'Some models for estimating technical and scale inefficiencies in data envelopment analysis', Management science, 30(9), 1078-1092.
Bogetoft, P. \& Otto, L. (2010), Benchmarking with DEA, SFA, and R, Springer Science \& Business Media, New York, USA.
Charnes, A., Cooper, W.W. \& Rhodes, E. (1978), 'Measuring the efficiency of decision making units', European Journal of Operational Research, 2(6), 429-444.
Emrouznejad, A. \& Yang, G.L. (2017), 'A survey and analysis of the first 40 years of scholarly literature in DEA: 19782016', Socio-Economic Planning Sciences, 1-5, retrieved on March 5 ${ }^{\text {th }}$, 2017, from $<$ http://doi.org/10.1016/j. seps.2017.01.008>.
Farrell, M.J. (1957), 'The measurement of productive efficiency', Journal of the Royal Statistical Society, 120(3), 253-290.

Iliyasu, A., Mohamed, Z.A., Ismail, M.M., Abdullah, A.M., Kamarudin, S.M. \& Mazuki, H. (2014), ‘A review of production frontier research in aquaculture (2001-2011)', Aquaculture Economics \& Management, 18(3), 221-247.
Iliyasu, A. \& Mohamed, Z.A. (2015), 'Technical efficiency of tank culture systems in peninsular Malaysia: An application of data envelopment analysis', Aquaculture Economics \& Management, 19(4), 372-386.

Iliyasu, A., Mohamed, Z.A. \& Terano, R. (2016), ‘Comparative analysis of technical efficiency for different production culture systems and species of freshwater aquaculture in Peninsular Malaysia' Aquaculture Reports, 3, 51-57.
Lê Kim Long \& Đặng Hoàng Xuân Huy (2015), 'Phân tích hiệu quả kỹ thuật cho các ao nuôi tôm he chân trắng tại thị xã Ninh Hòa, tỉnh Khánh Hòa', Tạp chí Khoa học Truờng Đại học Cà̀n Tho', 40(2), 7-14.
Lê Kim Long, Lê Văn Tháp, Phạm Thị Thanh Thủy \& Nguyễn Xuân Thủy (2016), 'Phát triển bền vững nghề nuôi tôm thẻ chân trắng tại các tỉnh duyên hải Nam Trung Bộ', đề tài cấp Bộ Giáo Dục và Đào tạo, mã số: B2014-13-12.
Martinez, C.F.J. \& Leung, P. (2004), 'Sustainable aquaculture and producer performance: Measurement of environmentally adjusted productivity and efficiency of a sample of shrimp farms in Mexico', Aquaculture, 241(1), 249-268.
Nguyen, K.T. \& Fisher, T.C. (2014), 'Efficiency analysis and the effect of pollution on shrimp farming in the Mekong river delta', Aquaculture Economics \& Management, 18(4), 325-343.
Nguyễn Văn Quang \& Nguyễn Tiến Hùng, (2014), 'Hiệu quả kỹ thuật của các hộ nuôi cá lồng bè tại Cẩm Phả, Quảng Ninh: Phương pháp phân tích bao dữ liệu - DEA', Tạp chí Kinh tế và Phát triển, 199, 55-64.
Sở Nông nghiệp và Phát triển Nông thôn Quảng Ngãi (2015), Tình hình sản xuất, nuôi trồng thủy sản năm 2014 và Kế hoạch và các giải pháp năm 2015, Quảng Ngãi.
VASEP (2016), Thống kê xuất khẩu thủy sản Việt Nam, truy cập ngày 22 tháng 7 năm 2016, từ <http://vasep.com. vn /123/Thong-ke-thuy-san/XNK-thuy-san-Viet-Nam>.
Varian, H.R. \& Repcheck, J. (2010), Intermediate microeconomics: A modern approach, WW Norton \& Company, New York, USA.

